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A seminal milestone in lattice statistics is the exact solution of the enumeration
of dimers on a simple-quartic net obtained by Fisher, Kasteleyn, and Temperley
(FKT) in 1961. An outstanding related and yet unsolved problem is the enu-
meration of dimers on a net with vacant sites. Here we consider this vacant-site
problem with a single vacancy occurring at certain specific sites on the boundary
of a simple-quartic net. First, using a bijection between dimer and spanning tree
configurations due to Temperley, Kenyon, Propp, and Wilson, we establish that
the dimer generating function is independent of the location of the vacancy, and
deduce a closed-form expression for the generating function. We next carry out
finite-size analyses of this solution as well as that of the FKT solution. Our
analyses lead to a logarithmic correction term in the large-size expansion for the
vacancy problem with free boundary conditions. A concrete example exhibiting
this difference is given. We also find the central charge c=−2 in the language
of conformal field theory for the vacancy problem, as versus the value c=1
when there is no vacancy.
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1. INTRODUCTION

The problem of enumerating close-packed dimers on a finite simple-quartic
net was solved by Temperley and Fisher (1, 2) and by Kasteleyn (3) in 1961.
An outstanding related but yet unsolved problem is the enumeration of
dimers on a net with vacant sites. (4) Here, we consider this vacancy problem
when a single vacant site occurs on the boundary.

The difficulty associated with the vacancy problem is that, while the
determinant whose square root yields the dimer generating function can be



written down using the Kasteleyn formulation, (3) its evaluation is difficult.
In 1974 Temperley (5) reported an intriguing bijection relating close-packed
dimer coverings with spanning tree configurations on two related lattices.
This offers an alternate approach to the vacancy problem since spanning
trees can be enumerated by standard means. The Temperley bijection has
been of renewed recent interest and extended to graphs with certain weighted
and/or directional edges. (6) Here, we use an extension of the Temperley
bijection due to Kenyon et al. (6) to study the vacancy dimer problem.

Our first result is that, for a simple-quartic net with free boundaries
and one fixed vacant site located at certain specific sites on the boundary,
the dimer generating function is independent of the position of the vacancy.
The exact generating function for close-packed dimers on this net is then
deduced from that of the spanning trees. In view of the connection with the
conformal field theory (7) and current interests in finite-size analyses for two-
dimensional lattice models, (8–10) we next carry out finite-size analyses for the
weighted spanning tree solution as well as that of the FKT solution. It is
found that a logarithmic correction term arises in the large-size expansion
in the case of the vacancy problem with free boundaries, a term which is
absent in the expansion of the FKT solution. A concrete example demon-
strating this difference is given. We also find that the occurrence of a
vacancy yields a new central charge c=−2 in the language of the confor-
mal field theory.

The organization of this paper is as follows: To make the paper self-con-
tained, we restate and establish in Section 2 the bijection due to Temperley(5)

between spanning tree and dimer configurations, as well as an extended
version of the bijection due to Kenyon et al. (6) This extended Temperley
bijection permits us to establish in Section 3 the independence of the dimer
generating function on the location of the vacancy when it occurs at speci-
fic boundary sites. The explicit expression of the generating function for a
simple-quartic net is then obtained. In Section 4 we carry out finite-size
analyses for weighted spanning trees and the FKT dimer solution. Spe-
cializing the results to dimer enumerations, we find a logarithmic correction
term which is unique to the vacancy problem with free boundaries. Dis-
cussions and a summary of our findings are given in Section 5.

2. THE EXTENDED TEMPERLEY BIJECTION

For definiteness we consider a simple-quartic net (lattice) with free
boundaries, although much of the results of this section also hold for more
general planar graphs. (4, 6)

First we restate the Temperley bijection. Starting from a L1 × L2

simple-quartic net G with free boundaries, one constructs a dimer lattice GD
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(a) (b) (c)

Fig. 1. The construction of dimer lattices GD from a 3 × 3 spanning tree lattice G. Solid
circles denote odd sites and open circles denote the odd site that has been removed in GD.
(a) A spanning tree lattice G. (b) A dimer lattice GD constructed from G with one corner site
removed. (c) A dimer lattice GD constructed from G with one odd site on the boundary
removed.

by (i) adding a new site at the midpoint of each edge of G, (ii) inserting
in each internal face of G a new site connected to the midpoints of the
4 edges of G surrounding it, and (iii) removing one corner site of the
resulting lattice and its incident edges on GD. Thus, GD has a total of
(2L1 − 1)(2L2 − 1) − 1 sites consisting of the original L1L2 − 1 sites of G,
which we call the odd sites, and the remaining (2L1 − 1)(2L2 − 1) − L1L2

new sites, which we call the even sites. An example of this construction for
L1=L2=3 is shown in Figs. 1(a) and 1(b).

A spanning tree is a collection of connected edges of G which does not
form closed circuits and covers all sites. Then we have the

Temperley bijection: There exists a one–one correspondence between
spanning tree configurations on G and dimer configurations on GD.

To see that the bijection holds, one observes that to each spanning tree
configuration on G, one can construct a unique dimer configuration on
GD by first laying a dimer along each tree edge, starting from the edge(s)
covering the corner site of GD which has (have) been removed, and proceed
along the spanning tree edges in an obvious fashion. After laying dimers
along all tree edges, the remaining sites of GD can then be covered by
dimers in a unique way. (5) Conversely, starting from each dimer configura-
tion on GD, one constructs a unique tree configuration on G by drawing
bonds (tree edges) along dimers originating from all odd sites. These bonds
cannot form close circuits, since otherwise they would have enclosed an
odd number of sites of GD which is not permitted in close-packed dimer
configurations. This process leads to a unique tree configuration on G. This
completes the proof. An example of the Temperley bijection is shown in
Figs. 2(a) and 2(b).

Kenyon et al. (6) have shown that the Temperley bijection holds more
generally for graphs with certain weighted and/or directed edges. For our
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(a) (b) (c)

Fig. 2. The bijection between spanning trees on G and dimer configurations of GD. (a)
A spanning tree configuration on G. (b) The corresponding dimer configuration on the dimer
lattice GD of Fig. 1(b). (c) The corresponding dimer configuration on the dimer lattice GD of
Fig. 1(c).

purposes, however, we shall confine ourselves to the original Temperley
bijection as stated in the above, with the step iii) replaced by one of remov-
ing an odd site on the boundary together with its incident edges. An
example of constructing such a GD is shown in Fig. 1(c). The proof of the
bijection between tree configurations on G and dimer coverings on GD goes
through as before, and we are led to the

Extended Temperley bijection (Temperley–Kenyon–Propp–Wilson):
There exists a one–one correspondence between spanning trees on G and
dimer coverings on any GD constructed from G by removing any boundary
odd site and its incident edges in step (iii) of the construction described in the
above.

An example of such a bijection is shown in Figs. 2(a) and 2(c).

Remark. The extended Temperley bijection does not hold for dimer
lattices GD containing an interior vacancy. In that case while each spanning
tree can still be mapped into a unique dimer configuration as before, there
exist dimer configurations which cannot be mapped into spanning trees.
These are dimer coverings with no dimers laying on any of the 4 edges of G
incident to the defect site.

3. DIMER LATTICE WITH A VACANT BOUNDARY SITE

3.1. Dimer Generating Function

The dimer generating function for GD is

Z(GD; x1, x2)= C
dimer config.

xn1
1 xn2

2 (1)
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where the summation is taken over all dimer covering configurations,
x1 and x2 are, respectively, the weights of horizontal and vertical dimers,
and n1 and n2 are, respectively, the number of horizontal and vertical
dimers. Clearly, we have

Z(GD; 1, 1)=the number of dimer configurations on GD. (2)

Consider two different dimer lattices GD and G −

D obtained from G as
described in the above, namely, by removing different boundary odd sites.
Then we have the following equivalence:

Proposition 3.1.1.

Z(GD; x1, x2)=Z(G −

D; x1, x2) (3)

for any GD and G −

D.

Proof. The extended Temperley bijection dictates that there is a
one–one correspondence between spanning tree configurations on G and
dimer configurations on any GD. It follows that there is a bijection between
dimer coverings on GD and G −

D, and that the summation in (1) on GD can
be considered as taken over all spanning tree configurations on G.

For each spanning tree configuration T of G, the dimer weight in the
summand in (1) consists of two factors,

xn1
1 xn2

2 =Wo(T; x1, x2) We(T; x1, x2), (4)

where Wo is the product of the weights of those dimers originating from
odd sites, and We is the product of the weights of those dimers covering
two even sites. For the two dimer coverings of GD and G −

D corresponding to
the same T, their We factors are the same by definition. Their Wo factors
are also the same since, even though the respective dimer positions may be
shifted, they lay along the same spanning tree edges hence carry the same
weights. It follows that summations on the l.h.s. and r.h.s. of (3) are iden-
tical term by term, and the proposition is proved. L

Remark. Proposition 3.1.1 holds more generally for arbitrary planar
G and its related GD. Since the overall dimer weight can always be fac-
torized into the product WoWe as in (4), the proof of the proposition goes
through as presented.

We next consider the generating function of weighted spanning trees
for the L1 × L2 simple-quartic G. Assign weights x1 and x2, respectively, to
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edges in the horizontal and vertical direction. Then, the weighted spanning
tree generating function is

T(G; x1, x2)=C
T

xn1
1 xn2

2 (5)

where the summation is taken over all spanning tree configurations T on G
and, as in (1), n1 and n2 are the numbers of edges in the spanning tree in
the respective directions. Particularly, we have

T(G; 1, 1)=the number of spanning tree configurations on G. (6)

From the extended Temperley bijection, it is clear that we can also write (5)
as

T(G; x1, x2)=C
T

Wo(T; x1, x2) (7)

where Wo is the factor in (4) for the dimer covering on any GD. It is seen
from (7) that if all dimers covering even sites of GD have the weight 1,
namely We=1, then the dimer generating function is simply T(G; x1, x2).

More generally for a simple-quartic G of size L1 × L2 and the related GD,
we have the equivalence:

Proposition 3.1.2.

Z(GD; x1, x2)=xL1(L2 − 1)
1 xL2(L1 − 1)

2 T 1G;
x1

x2
,

x2

x1

2 . (8)

Proof. From the construction of GD we note that there are a total of
L2(L1 − 1) even sites located at midpoints of horizontal edges of G. We call
these the H sites. Similarly, there are L1(L2 − 1) even sites of GD located at
midpoints of vertical edges of G, which we call the V sites.

The H and V sites can be covered by either horizontal or vertical
dimers. Let NHh (NHv) be the number of horizontal (vertical) dimers cover-
ing the H sites. Then we have

NHh+NHv=L2(L1 − 1). (9)

Likewise, we have

NVh+NVv=L1(L2 − 1), (10)
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where NVh (NVv) is the number of horizontal (vertical) dimers covering the
V sites. In these notation, we can rewrite the spanning tree and dimer gen-
erating functions as

T(G; x, y)=C
T

xNHhyNVv

Z(GD; x1, x2)=C
T

xNHh+NVh
1 xNHv+NVv

2 ,
(11)

where we have used the one–one correspondence between spanning tree
configurations T and dimer configurations. Proposition 3.1.2 now follows
after eliminating NVh and NHv in (11) using (9) and (10). L

3.2. Dimer Enumerations

For a simple-quartic G of size L1 × L2 with free boundaries, the gen-
erating function (7) for weighted spanning trees has been evaluated (11) and
is given by

T(G; x1, x2)=
1

L1L2
D

L1 − 1

m=0
D

L2 − 1

n=0

52x1
11 − cos

mp

L1

2+2x2
11 − cos

np

L2

26 ,

(m, n) ] (0, 0). (12)

Now the dimer lattice GD is of size M × N with a boundary vacancy, where

M=2L1 − 1, N=2L2 − 1. (13)

In terms of the dimer lattice sizes M, N, we thus have, after using Proposi-
tion 3.1.2 and (12) and some steps

Z{M × N − 1}(x1, x2)=x (M − 1)/2
1 x (N − 1)/2

2

× D
M − 1

2

m=1
D
N − 1

2

n=1

54x2
1 cos2 mp

M+1
+4x2

2 cos2 np

N+1
6 . (14)

Here, we must have MN=odd to admit dimer coverings. The subscript
{M × N − 1} in (14) reminds us that the enumeration is for an M × N net
with one boundary odd site removed. This expression is to be compared
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with the enumeration of dimers on an M × N simple-quartic net without
vacancies. For M and N both even, for example, the expression is (3)

Z{M, N}(x1, x2)= D
M/2

m=1
D
N/2

n=1

54x2
1 cos2 1 mp

M+1
2+4x2

2 cos2 1 np

N+1
26 . (15)

4. FINITE-SIZE ANALYSES

Finite-size expansions of physical quantities associated with two-dimen-
sional lattice models have been of current interest both in physics (7, 9, 10) and in
mathematics.(4) For the dimer problem Kenyon (4) has recently deduced very
general results on the leading terms of the asymptotic expansion of the dimer
enumeration for rectilinear lattices with free boundaries of any shape. Alter-
nately, one can obtain expansions for regular lattices, in principle to all orders,
by analyzing known exact expressions.(8, 9) This is the approach we now use.

4.1. Spanning Tree Generating Function

Consider first the generating function (12) for the fully weighted
spanning trees. For large L1 and L2, we expect to have

1
L1L2

ln T(G; x1, x2)=fbulk(x1, x2)+fc(x1, x2) (16)

where fbulk is the per-site bulk free energy and fc is the correction contain-
ing terms of the order of L−1

1 , L−1
2 and higher. Using (12), we find the bulk

free energy

fbulk(x1, x2) — lim
L1, L2 Q .

1
L1L2

ln T(G; x1, x2)

=
1
p2 F

p

0
dh F

p

0
df ln[2x1(1 − cos h)+2x2(1 − cos f)]

=
4
p

F
p/2

0
df ln(`x1+x2 sin2f+`x2 sin f), (17)

where the last line is obtained by carrying out the h integration. The com-
putation of correction terms fc for products of the form of (12) is stan-
dard. (2, 8, 12) Particularly, one has

fbulk(1, 1)=
4
p

G (18)

678 Tzeng and Wu



where G is the Catalan constant given by

G=1 − 3−2+5−2 − 7−2+ · · · =0.915 965 594... . (19)

To compute (16) we proceed as follows. Take out a factor x1 from
each of the L1L2 − 1 factors in (12) and split the product into 3 parts to
take care of the exclusion of the m=n=0 factor. We have

T(G; x1, x2)=(L1L2)−1 xL1L2 − 1
1 (T0T1T2) (20)

where

T0= D
L1 − 1

m=1
D

L2 − 1

n=1
F(m, n), T1= D

L1 − 1

m=1
F(m, 0), T2= D

L2 − 1

n=1
F(0, n) (21)

with

F(m, n)=2 11 − cos
mp

L1

2+2y 11 − cos
np

L2

2 (22)

and

y=x2/x1. (23)

Using the identity (13)

D
N − 1

n=1

52 cosh 2h − 2 cos
np

N
6=

sinh 2Nh

sinh 2h
, (24)

and its h Q 0 limit,

D
N − 1

n=1

52 − 2 cos
np

N
6=N, (25)

we find

T0= D
L2 − 1

n=1

sinh(2L1hn)
sinh 2hn

, T1=L1, T2=y
L2 − 1L2, (26)

with hn given by

cosh 2hn=1+y 11 − cos
np

L2

2 , (27)
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or, explicitly,

hn=F 1 np

2L2

2 — [cosh−1(1+2a2
n)]/2

=sinh−1 an

=ln(an+`1+a2
n), (28)

where

an=`y sin
np

2L2
. (29)

Substituting (26) into (12), we thus obtain

T(G; x1, x2)=xL1L2 − 1
1 y

L2 − 1 D
L2 − 1

n=1

sinh(2L1hn)
sinh 2hn

. (30)

The product in the denominator in (30) can again be evaluated using (24)
as

D
L2 − 1

n=1
sinh2 2hn= D

L2 − 1

n=1
(cosh 2hn − 1) · D

L2 − 1

n=1
(cosh 2hn+1)

= D
L2 − 1

n=1

5y 11 − cos
np

L2

26 · D
L2 − 1

n=1

52+y − y cos
np

L2

6

=L2
1 y

2
22(L2 − 1) 1 sinh 2L2a

sinh 2a
2 (31)

where a is given by

cosh 2a=1+2y−1 (32)

or sinh a=1/`y, or explicitly,

a=ln(`y−1+`1+y−1). (33)

Combining these results, we obtain from (30) the expression

T(G; x1, x2)=xL1L2 − 1
1

1 sinh 2a

L2 sinh 2L2a
21/2

D
L2 − 1

n=1
[2 sinh(2L1hn)]. (34)
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Taking the logarithm, we obtain

ln T(G; x1, x2)=(L1L2 − 1) ln x1+2L1 C
L2 − 1

n=1
hn+ C

L2 − 1

n=1
ln(1 − e−4L1hn)

− L2a −
1
2

ln(1 − e−4L2a) −
1
2

ln L2+
1
2

ln(sinh 2a). (35)

For large L1 and L2 with the ratio L1/L2 finite, the first two terms in
(35) contribute to the bulk free energy fbulk(x1, x2) given in (17). To carry
out the summations in (35), we use the Euler–MacLaurin summation
formula given by

C
N

n=1
f(a+nd)=

1
d

F
a+Nd

a
f(x) dx+

1
2

[f(a+Nd) − f(a)]

+
d

12
[fŒ(a+Nd) − fŒ(a)]+O(d3). (36)

With a=0, N=L2, d=p/2L2, and f(x)=F(x) defined in (28), one has

C
L2 − 1

n=1
hn= C

L2

n=1
hn − hL2

=
L2

2
[fbulk(x1, x2) − ln x1] −

1
2

ln(`1+y+`y) −
p `y

24L2

+O(L−3
2 ).

(37)

For the second summation in (35), we follow the manipulation in ref. 8
to write

C
L2 − 1

n=1
[1 − e−4L1hn]= C

.

n=1
(1 − e−2nL1p `y/L2)+O(L−2+E

2 ) (38)

for some 0 < E < 2, with E Q 0 when L2 Q .. Putting the results together,
we find the finite-size correction

fc(x1, x2)=
c1(x1, x2)

L1
+

c2(x1, x2)
L2

+
c3(x1, x2)

L1L2
+o 1 1

L1L2

2 , (39)
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where

c1(x1, x2)= − ln(`y−1+`1+y−1)

c2(x1, x2)= − ln(`y+`1+y)

c3(x1, x2)= −
1
2

ln L2+ln 2+
1
4

ln
(x1+x2)

x3
1x2

2

−
p `y L1

12L2

+ C
.

n=1
ln(1 − e−2np `y L1/L2). (40)

Particularly, for x1=x2=1, the expression fc(1, 1) given by (39) reduces
to the one given in refs. 4 and 14.

Despite its appearance, the expression for c3(x1, x2) is actually sym-
metric in {x1, L1} Y {x2, L2}, a fact can be seen from the identity

C
.

m=1
ln(1 − e−2mpL2/`y L1) −

1
2

ln L1 −
1
4

ln x2 −
pL2

12 `y L1

= C
.

n=1
ln(1 − e−2np `y L1/L2) −

1
2

ln L2 −
1
4

ln x1 −
p `y L1

12L2

. (41)

Introducing the Jacobi theta function

J1(f, q)=2q1/4 sin f D
.

n=1
(1 − q2n)(1 − 2q2n cos 2f+q4n), (42)

and the identity (15)

D
.

n=1
(1 − q−2n)=5J −

1(0, q)
2q1/4

61/3

(43)

where J −

1 is the derivative of J1 with respect to f, then we have also

c3(x1, x2)=−
1
2

ln L2+
1
4

ln
(x1+x2)

x3
1x2

2

+
1
3

ln[4J −

1(0, q)] (44)

where

q=e−L1 `y p/L2. (45)
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The identity (41) follows from the Jacobi transformation (15)

J −

1(0, e−pv)=v−3/2J −

1(0, e−p/v), v > 0. (46)

Now, the theta function J −

1 is finite for L1/L2 finite,3 it follows that the

3 This also follows from the fact that the series ;.

n=1 ln(1 − un)=−;.

n=1 ;.

m=1 umn/m=
−;.

m=1 um/m(1 − um) converges for all 0 [ u < 1.

leading behavior of c3 is ln L2 (’ ln L1).
In conformal field theory (7) one needs to compute the limits

1
L1

lim
L2 Q .

ln T(Z2)
L2

=fbulk+
c1

L1
+

D1

L2
1

+o(L−2
1 ); (47)

1
L2

lim
L1 Q .

ln T(Z2)
L1

=fbulk+
c2

L2
+

D2

L2
2

+o(L−2
2 ). (48)

Using (39), we find

D1=−
p

12 `y
, D2=−

p `y

12
. (49)

This yields a central charge c=−2 upon taking x1=x2=1 (y=1).

4.2. Dimer Enumerations

We are now in a position to analyze the finite-size corrections of the
two dimer enumerations (14) and (15). Although the expressions refer to
two dimer lattices with different geometry, one for an M × N − 1 lattice
with a vacancy and MN=odd, and one for an M × N lattice with
MN=even, a comparison can still be meaningful if both expansions are
expressed in terms of lattice sizes M and N.

(a) Close-Packed Dimers. For close-packed dimers on an M × N
net with MN=even, we have carried out the analysis for the expression
(15) along the lines outlined in the above, and obtained the result (which
can also be extracted from discussions in refs. 8 and 9)

ln Z{M × N}(x1, x2)=(MN+1) f̄bulk+Nc̄1+Mc̄2+c̄3+o(1), (50)
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where

f̄bulk(x1, x2)=
1
4

fbulk(x2
1, x2

2),

c̄1(x1, x2)=f̄bulk(x1, x2) −
1
2

ln(x1+`x2
1+x2

2)

c̄2(x1, x2)=f̄bulk(x1, x2) −
1
2

ln(x2+`x2
1+x2

2)

c̄3(x1, x2)=
1
2

ln 2 −
1
2

ln(x1+`x2
1+x2

2) −
1
2

ln(x2+`x2
1+x2

2)

+
1
4

ln(x2
1+x2

2)+
pMx2

24Nx1
+ C

.

n=1
ln(1+e−(2n − 1) pMx2/Nx1). (51)

Expressions of c̄1(x1, x2) and c̄2(x1, x2) reduce to those found by Kenyon (4)

when x1=x2=1. In the language of the conformal field theory, (7) the term
pMx2/24Nx1 in c̄3 yields the central charge c=1 upon taken M=N and
x1=x2, the accepted value for dimer and Ising systems.

Again, the expression (51) for c̄3 is symmetric in {x1, M} Y {x2, N},
a fact can be seen from the identity

pMx2

24Nx1
+ C

.

n=1
ln(1+e−(2n − 1) pMx2/Nx1)=

pNx1

24Mx2
+ C

.

m=1
ln(1+e−(2m − 1) pNx1/Mx2).

(52)

The series ;.

n=1 ln(1+u2n − 1) converges,4 so c̄3 does not diverge for large

4 This also follows from the fact that the series ;.

n=1 ln(1+u2n − 1)=−;.

m=1 (−u)m/
m(1 − u2m) converges for all 0 [ u < 1.

M, N.
The expression for c̄3 can also be written as

c̄3(x1, x2)=
2
3

ln 2 −
1
2

ln(x1+`x2
1+x2

2) −
1
2

ln(x2+`x2
1+x2

2)

+
1
4

ln(x2
1+x2

2)+
1
2

ln J3(0, q) −
1
6

ln J −

1(0, q), (53)

where q=e−pMx2/Nx1 and the theta function J3 is given by (15)

J3(f, q)=D
.

n=1
(1 − q2n)(1+2q2n − 1 cos 2f+q4n − 2). (54)
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Then, the identity (52) is a consequence of the Jacobi transformations (41)
and

J3(0, e−p/v)=v1/2J3(0, e−pv), v > 0. (55)

(b) Close-Packed Dimers with a Boundary Vacancy. For the
simple-quartic net M × N − 1 with a boundary vacancy and MN=odd,
one uses

L1=(M+1)/2, L2=(N+1)/2, (56)

and expand (39) for large M and N. After some algebra, we find

ln Z{M × N − 1}(x1, x2)

=(L1L2 − L1) ln x1+(L1L2 − L2) ln x2+ln T 1G;
x1

x2
,

x2

x1

2

=(L1L2 − L1) ln x1+(L1L2 − L2) ln x2

+L1L2
5fbulk

1x1

x2
,

x2

x1

2+fc
1x1

x2
,

x2

x1

26

=(MN+1) f̄bulk+Nc̄1+Mc̄2+c̄ −

3+o(1), (57)

where c̄1 and c̄2 are given in (51), and

c̄ −

3(x1, x2)=
3
2

ln 2 −
1
2

ln(x1+`x2
1+x2

2)

−
1
2

ln(x2+`x2
1+x2

2)+
1
4

ln 11+
x2

2

x2
1

2

−
1
2

ln N −
pMx2

12Nx1
+ C

.

n=1
ln(1 − e−2npMx2/Nx1). (58)

Comparing c̄ −

3 with c̄3 given by (51), we see that for large M, N the deletion
of a boundary site introduces a logarithmic correction term − ln `N in c̄ −

3.
Furthermore, upon taking M=N the term − pMx2/12Nx1 in c̄ −

3 yields a
central charge c=−2, which is different from that of the dimer system
without vacancies.

To verify the occurrence of a logarithmic term for the vacancy
problem, we consider the following example. Consider two dimer nets of
N2 − 1 sites each, where N \ 3 is an odd integer so that the nets admit
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dimer coverings. While the two nets have different geometries, one a rec-
tangular net of size (N+1) × (N − 1) and one a square net of size N × N
with one boundary odd site removed, they have the same area and perime-
ter. Any difference in the evaluations of (50) and (57) would occur in c̄3

and c̄ −

3 and higher order terms. Now from (50) and (57) we obtain

ln Z{(N+1) × (N − 1)}(1, 1)=N2 1G
p
2+2Nc̄1 − ln(1+`2)+

3
4

ln 2+
p

24

+ C
.

n=1
ln[1+e−(2n − 1) p]+o(1)

ln Z{N × N − 1}(1, 1)=(N2+1)1G
p
2+2Nc̄1 − ln(1+`2)+

7
4

ln 2

−
p

12
−

1
2

ln N+ C
.

n=1
ln[1 − e−2np]+o(1).

(59)

Defining the ratio

R(N) —
Z{(N+1) × (N − 1)}(1, 1)

Z{N × N − 1}(1, 1)
(60)

and using (59), we find the large N behavior

R(N) Q C `N, N Q ., (61)

where

C= lim
N Q .

R(N)

`N
=

ep/8 − G/p

2
D
.

n=1

11+e−(2n − 1) p

1 − e−2np
2 .

=0.578250... . (62)

As a numerical check, we have computed the value of R(N)/`N for N=3
to 2251 using (14) and (15). For N=9, for example, one has

Z{10 × 8}(1, 1)=1031151241=(89)× (11585969)

Z{9 × 9 − 1}(1, 1)=557568000=212 × 32 × 53 × (11)2

R(9)/`9=0.616457... .

(63)

Results plotted in Fig. 3 confirm the large N limit of C given by (62) as
well as the occurrence of the logarithmic correction in the vacancy
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Fig. 3. The enumeration of R(N)/`N for N=3 to 2251. The dashed line indicates the
value C given by (62) in the large N limit.

problem. We remark that a similar result obtained by Kenyon (4) involving
the occurrence of vacancy sites in the middle of a rectilinear net gives the
ratio

R(N) ’ N3/4, N Q ., (64)

and thus a logarithmic correction − 3
4 ln N in the finite-size expansion.

5. SUMMARY AND DISCUSSIONS

We have used the Temperley–Kenyon–Propp–Wilson bijection between
spanning trees on a lattice with free boundaries and dimer configurations
on a related lattice with a boundary vacancy to establish the independence
of the dimer generating function on the location of the vacancy. The
equivalence is stated in Proposition 3.1.1. The generating function for close-
packed dimers on a lattice with a single boundary vacancy is next com-
puted as given by ref. 14, and compared with that of the known results for
dimers without vacancies. It is found that the vacancy introduces a
logarithmic correction in the large lattice expansion. A concrete example
exhibiting this correction for an MN=odd net with a vacancy as
compared to an MN=even net without vacancies is given.

To ascertain whether the logarithmic correction is due to the defect of
a vacancy, or due to the oddness of the net size, one needs to compare
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expansions for two nets (of the same even-even lattice), one with two
boundary vacancies and one without vacancies. While this problem can be
formulated as the evaluation of the inverse of a matrix (16) in the Kasteleyn
formulation, we argue that since the correction in question is that of the
physical free energy of a dimer system, on physical ground one expects the
correction to be additive for vacancies located sufficiently far apart. This
would imply the logarithmic correction to be a ‘‘local’’ property due to the
occurrence of vacancies.

We have also found that in the language of the conformal field theory
the central charge for the vacancy problem is c=−2 as compared to the
value of c=1 for the dimer solution without vacancies. Furthermore, the
`N ratio (61) implies the existence of a boundary operator with scaling
dimension 1/2, a value which does not appear in the standard Kac classi-
fication of operators at central charge − 2.5 The extraction of the central

5 We are indebted to the referee for this remark.

charge should be viewed with caution, however, since the dimer systems do
not exhibit critical points.

We have also carried out finite-size analyses (details of which to be
given elsewhere) for spanning trees on simple-quartic nets with other,
including the toroidal, cylindrical, Möbius, and Klein bottle, boundary
conditions. It is found that the logarithmic correction reported in this
paper arises only in the case of free boundaries. This is consistent to the
fact that the formulation of the extended Temperley bijection as presented
in this paper is a property that is unique to graphs with free boundaries.
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